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ITS EFFECT ON TEMPERATURE AND TITS PRESSURE ON SMALL BODIES. 545

motion alters the rate at which the surface is emitting radiation, but it appears worth
while to trace consequences on the assumption that the radiation goes on as if the
surface were at rest,* but that it is crowded up into less space or spread over more,
and that we can superpose on this the energy given out to, or taken from, the stream by
the work done by or on the moving surface by the radiation pressure. This work can
evidently be calculated to the first order of approximation by supposing the pressure
equal to its value when the surface is at rest.

Let us draw from A as centre a sphere of radius U, equal to the velocity of radiation.
The energy which, in a system at rest. would be radiated into a cone with A as vertex,
length U, and solid angle dw, in the direction AP making y with the direction of
motion AB, will now be crowded up into a cone of length U — w cos y, since w cos
is the velocity of A in the direction AP. We shall suppose that «/U is very small.
Hence the energy density in the cone is increased in the ratio U 4 cosy : U or by
the factor 1 + u cos x/U.

Considering now the effect of the work done, the force on A due to the stream in
dw is N cos 8 dw/U, and the work done in one second is (N cos 8 do/U) X u cos x.

When A is at rest the energy in this cone is

N cos 0 do.
When A is moving it is increased to

N cos 0 dw

Ncosfdow + - T

U COS X,
that is
Ncosﬁdw<1 +uc{c} >

Thus the effect of the work done is equal to that of the crowding and the energy
density on the whole is increased in the ratio

21 co8 X

14 U

The pressure is increased in the ratio of the energy density. Then the force on A
due to the radiation through dw is increased from

N cos 0 dw N cos Hdw(
- to . L 4 =
U U
* Added August 20, 1903.—Since the above was written Professor LARMOR has pointed out to me that
the results obtained in the text from this assumption, along with the hypothesis of crowding of the
radiation and its increase by an amount equivalent to the work of the radiation pressure, can be justified
by an argument based on the following considerations. A perfect reflector moving with uniform speed in
an enclosure, itself also moving at that speed, and so in a steady state, must send back as much radiation
of every kind as a full radiator in its place. Now the electrodynamics of perfect reflexion are known;
hence the effect of motion of a full radiator on the amount of its radiation can be determined. The result
is equivalent to the statement that the amplitudes of the excursions of the optical vibrators are the same
at. the same temperature whether the source to which they belong is moving or not.
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546 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM :

If we resolve this along the normal to the surface A and integrate over the
hemisphere we obtain the total normal pressure. As we only want to know the
change in pressure P we may neglect the first term which gives the pressure on A at

rest, and we have
— [Noos§  2ucosy
P = !' U U do.
If ¢ 1s the angle between the normal planes through B and P we have

cos y = ¢0s 0 cos ¢ + sin §sin ¢ cos ¢.

Putting de = sin 8 d6 dé,

P = [: J% 2uN cos® 0 sin 0 (cos 0 cos ¢ + 20 sin y cos ¢) df dep

o U2
_ m™Nu cos __ Ru cos
=To%5 =

The change in the tangential stress is evidently in the direction AC, that of the

component of v in the plane of A.

We may therefore resolve each element of tangential stress in the direction AC.
Omitting the first term again, since in this case it disappears on integration, the
element due to dw in the direction AP will contribute

Ncos 0 sin flcos p  2u cosy
U U

dow,

and integrating over the hemisphere we have

T = jz jzw 2uN cos 8 sin® 0 cos ¢ (cos 6 cos + sin O sin i cos ) df dep

oo U?
_ mNusin _ Rusiny
= o = 20

Force on o Sphere moving with Velocity “u” in a Gwen Direction.
14 )

If a sphere, radius «, is moving with velocity w, we may from symmetry resolve the
forces on each element in the direction of motion. The resolutes will be P cos ¢ and
Tsin . Evidently it is sufficient to integrate over the front hemisphere and then
double the result. We have the

: 2 (Rucos® | Rusin? :
Retarding Force = 2 SO < __3,‘.%’;,,}!’, + - uzstlﬁ ) 2ma® sin | dis
=% Ru wal,

rnz -
A
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It is noteworthy that one half of this is due to the normal, the other half to the

tangential stresses. 4
If the sphere has density p the acceleration is obtained by dividing by $wa®p, then

dufdt = — 2Ru/U?pa.

Lfiect on Rotation.

If the sphere radius @ is rotating with angular velocity w, then any element of the

surface N from the equator is moving with linear velocity at o cos X in its own plane.
This does not affect the normal pressure, but it introduces a tangential stress

opposing the motion
Ru/2U?% = Raw cos A/2U~
Taking moments round the axes and integrating over the sphere, we obtain a

couple
p ; i
4 , do  Raw (
frad, 2?50 = 200 f 2ma® cos® N d\,
dt 2U? l.»

whence
dw/dt = — & Rw/2U%0.

The rate of diminution of w is therefore of the same order as that of .

To obtain an idea of the magnitude of the retardation of a moving sphere, let us
suppose that one is moving through a stationary medium. Let its radius be
a = 1 centim., its density p = 5°5, its temperature 300° A.

Then ‘
1du _
u dt
=175 x 10715,

_2X 532 X 107° X 300*
9 X 10%* x 55

This will begin to affect the velocity by the order of 1 in 10,000 in, say, 10'* seconds,

or taking the year as 315 X 107 seconds, in about 30,000 years.
The effect is inversely as the radius, so that a dust particle 0°001 centim. radius

will be equally affected in 30 years.
The effect is as the fourth power of the temperature, so that with rising tempera-

ture it becomes rapidly more serious.
Equation to the Orbit of a Small Spherical Absorbing Particle Moving in
a Stationary Medwwm Round the Sun.

It is evident from the above result, that the effect of motion on radiation pressure

may be very considerable in the case of a small absorbing particle moving round the sun.

We shall take the particle as spherical, of radius ¢ and distance » from the sun. We

shall suppose the radius so small that the particle is of one temperature throughout, the
4 A2
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temperature due to the solar radiation which it receives, but that it is still so large
as to be attracted much more than it is repelled by the sun. Both attraction and
repulsion are inversely as the square of the distance, so that we shall have a central
force which we may put as producing acceleration A/r®, where A is constant.

We know that at the distance of the earth, putting » = b, A/b* = 0°59 centim. sec.?,
say 0'6 centim./sec.® Then A = 0'66% The force acting against the motion
produces retardation — 2Ru/U?pa.

If S is the solar constant at the distance b, its value at distance » 1s

S

Putting
° dnd®R = wa® SH¥/r?

R = (S/4) (b*/%),

then the acceleration in the line of motion is

o Sw TS
2U0%a  7? - e’

where T = S0%/2U%pa, and § is now written for the velocity w.
The accelerations along and perpendicular to the radius vector give the equations

.. ; A Tsdr
—_f = — s ar
Vo BT e (1),
1 d OO\ — T’% /]«da ¢
ca0= g o ()
From (2) we get
dt di
whence _
P=C—=T0 . . . . . . ... .3,

where C is the constant of integration. .
If @ 1is 0 when ¢ = 0, then C is the initial value of +?0. Further, as € increases
720 decreases and is 0 when & = C/T. This gives a limit to the angle described.
Equation (1) may be written
R e — At e Tl . 0 0 o o oo (4)
Putting u for »* :
. dr oy L du g, : du
em = = = = = (O - T#) = from (3),
"= 9? u® df ( ) g, from (3)
.;___rw'_gl_'l_ﬁ_ w—r195_£2_:l{/'
r=T0 g — (O =10 G0
5 du d*u

. T
] p— 22 (=T '2*@2 S trom (£
=T(C—To)u 7i (C —Tb) i frore (3)
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Substituting in (4)
& = A ,
dao? —(C =TH)y

(C = Toy
This can probably only be integrated by approximation. We can see the effect on
the motion at the beginning by putting
d*u A/, 2T
Brr=olirge)
since T/C is small if’ we begin at the distance of the earth and with a particle baving
the velocity of the earth.
An integral of this is
u::»é<1 +£'—rl9>
Cc? C
The complementary function will be periodic and may be omitted. To the order of
approximation adopted

r=5-%
T A C

0> and P = — -ggz 0,

Then initially .
7jr = — (2T/C) 6.

In applying these results, we may note that T = Sb*/2U%q is constant for all
distances, and that b, the earth’s distance, 1s 493 U. Inserting the value of the
solar constant, 0175 X 107, and taking p = 5°5, we get

T=39 x 10, oL

C will depend on the initial conditions. Assuming that the hody considered is
initially moving in a circle, then, at the beginning

wﬂ-‘zzﬁ or = A/ ==

since at »* = b the acceleration to the centre 1s 0°G.
Then -
C = 720 = /06b%.

Substituting these values in #/r we have

T8 X 10

9 %0

This gives only the initial value of;’; and cannot be taken to hold for a time which

will make T26?/C* appreciable. But by (3) we see that » = 0 if § = C/T, so that
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/27T is a superior limit to the number of revolutions, even if’ we suppose the way
clear right up to the centre.
Putting the numerical values we get

C/27T = 61ria.
Suppose, for example, that » = b = 493 X 3 X 10Y; « = 1, then
= — 85 X 101,

It we multiply by 3:15 X 107, the seconds in a year, (7/7) X 3'15 X 10'=1"1 X107,

This implies that a sphere I centim. radius and density 55, starting with the
velocity of the earth, and at its distance from the sun, will move inwards
Tosoo of its distance in about 10,000 years. [t cannot in all make so many as
61 X b* = 2'35 X 108 revolutions,

If we put @ = 0°001 centim., since the effects ave inversely as «, then its distance
will decrease by about 1 in 10,000 in 10 years, and it cannot make in all so many
as 2°35 X 10° revolutions. .

It instead of starting from the distance of the earth, the particle starts from,
say, 0°1 the distance, the effect in the radius is 100 times as great and the number
of revolutions is v/ 10 times less. Then with radius | centim. the distance decreases
by Lobao I 100 years, and there are not so many as 80,000 revolutions, while

with radius 0°001 centim. the distance decreases by in 0°1 year, and there are

1 07:5176
not so many as 80 revolutions.

Small particles, therefore, even of the order of I centim. radius, would be drawn
into the sun, even from the distance of the earth, in times not large compared with
geological times, and dust particles if large enough to absorb solar radiation would be
swept in in a time almost comparable with historical times. Near the sun the effects
are vastly greater. The application to meteoric dust in the system is obvious.

There should be a similar effect with dust and small particles circulating round the
earth. If] for example, any of the Krakatoa dust was blown out so far beyond the
appreciable atmosphere, and was given such motion that the particles became satellites
to the earth, at no long time the dust will return. A ring of dust particles moving
round a planet and receiving heat either from the sun or from the planet will
tend to draw in to the planet.

[Note added October 31.—Since the foregoing paper was printed [ have re-
examined the theory of the pressure on a fully radiating surface when i motion, and
have come to the conclusion that the change in pressure due to the motion is only
half as great as that obtained on p. 545. In that investigation the pressure was
assumed to be equal to the energy deusity, whether the surface was at rest or in
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motion, whereas it appears, if the following mode of treatment is correct, that the

.o . . %
pressure on a radiating surface moving forward is only 1 —

U of the energy density
of the radiation emitted.

Let us suppose that a surface A, a full radiator, is moving with velocity » towards
a full absorber B, which, with the surroundings, we will suppose at 0° A. Consider
for simplicity a parallel pencil issuing normal from A with velocity U towards B.
Let the energy density in the stream from A be K when A is at rest, and E’ when it
is moving. Let the pressure on A be p = K when it is at rest, and p’ when it is
moving.  When moving, A is emitting a stream of momentum p’ per second and this
momentum ultimately falls on B. Let A start radiating and moving at the same
instant ; let it move a distance ¢ towards B, and then let it stop radiating and
moving. It emits momentum p’ per second for a time d/u and therefore emits total
momentum p’d/u. Since B is at rest, the pressure on it, the momentum which it
receives per second, is . But since A is following up the stream sent out, B does
not receive through a period as long as d/u, but for a time less by d/U. If we assume
that the total momentum received by B is equal to the total sent out by A, we have

p'dju = E (dju — d/U),
or

p =T (1 — u/U).

To find E in terms of E we must make some assumption as to the effect of the
motion on the radiation emitted. In the paper I have assumed that the emitting
surface converts the same amount of its internal energy per second into radiant energy
as when it is at rest, but that p'u of the energy of motion of the radiating mass is
also converted into radiant energy. Since the radiation emitted in one second is
contained in length U — u, we have

B (U —u) = EU 4 p'u = BU + &/ <U[‘]‘“) %,

whence

U2
T = Ez_ﬁl_%)é = E (1 4 2u/U).

The same result is obtained if we assume that the amplitude of the emitted waves
is the same whether the surface is moving or not, and that the energy density is
inversely as the square of the wave-length for given amplitude.

We have, therefore, if the above application of the equality of action and reaction
is justified,

r=w(1="\=5. U —,(14+2
p~E<1 U>“’EU—u”’p<1+U>'

In a similar way we can find the effect of motion of an absorber on the pressure
against it due to the incident radiation.
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Let a stream of energy density Ii be incident on a fully absorbing surface moving
towards the source with velocity w. Let the surface be at 0°A, so as to obtain the
effect of the incident radiation only. When the surface is at rest, we may regard the
stream as bringing up momentum E per second, or as containing momentum ot
density E/U brought up with velocity U to it. 1If the surface is moving towards
the source, it takes up in one second the momentum in length U 4, or receives
Bé( + u), and the pressure on it is p’ = K ( 1+ U'\ =y (/I - I”T)

It is easy to show that when a perfect reflector is moving, the pressure upon it is

altered from p to p (] + ““u>
In the paper, the case of a full radiator in an enclosure at zero has alone heen

Uo11+

at x to the line of radiation. Hence the forces obtained in the paper when the factor

% cos X

considered, so that the correcting factor is 1 + when the motion is

was 1 -4 %Zf are all double those obtained with the factor now given. The process of

drawing in small particles to the sun is correspondingly lengthened out.

It is, perhaps, worth noting that the motion of a body round the sun produces a
small aberration effect. If the body is a sphere, the sunlight does not fall on the
hemisphere directly under the sun, but on one turned round through an angle /U-
The pressure of the radiation, thou<rh still straight from the sun, does not act through

the centre but through a point x radius of sphere in front of the centre. Thus,

?U’
in the case of the earth, it will tend to stop the rotation. But the effect is so minute
that if present conditions as to distance and radiation were maintained, it would take
something of the order of 10 years to stop the whole of the rotation. |
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