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the extremely small area involved, this has no appreciable effect whatever on
the total luminosity of the nebula.) Reduced with the aid of the other
Cambridge observations, the Mt. Wilson surface brightness at the centre is
then 14™.8/(second of arc)®.. On account of finite resolving power this is a
minimum value, representing the least concentration which must really occur
at the centre. We understand that unpublished Mt. Wilson material shows
that the spectrum of the nucleus is of a peculiar dwarf A type. It seems
likely that this is mainly produced by dwarf A stars, and if the average absolute
magnitude of these is +1, the star density at the centre attains at least
1000/(parsec)®.* There is, however, a very steep fall of density outwards,
and at o’-1, 7.e. about 77 parsecs from the centre, where the surface brightness
is 17™.2/(second of arc)?, the density cannot well exceed 100 stars/(parsec)?.

The centre of M 33 is quite different in character from that of M 31.
There is no gradual increase of luminosity to a quasi-stellar nucleus. The
spiral arms spring from a hazy mass which is of roughly constant surface
brightness and has a diameter about 1’-5. Lying along the spiral arms there
are large numbers of stellar or quasi-stellar objects, apparently belonging to
the nebula, and some also are to be found in the nebulous centre just men-
tioned. A few of the stars in the immediate neighbourhood of the centre
may be foreground objects. The Cambridge reflector is unable to reveal
any detail which can be definitely assigned as the nucleus of the nebula and
which at the same time has.enough area for the surface brightness to be
measured. Excluding stellar objects, the maximum surface brightness of
the ““hazy mass’, measured with one standard star exposure (Selected Area
46), is about 20™-3/(second of arc)?.

DYNAMICAL EFFECTS OF RADIATION IN THE
SOLAR SYSTEM.

H. P. Robertson.

(Communicated by Professor H. N. Russell)

1. Introduction.—In connection with his investigations on radiation
pressure, J. H. Poynting 1 at one time considered the consequences of
absorption and re-emission of solar radiation for the motion of small bodies.
Of these, perhaps the most important for cosmogony was a tangential drag,
which would give rise to a decrease in the angular momentum of the particle,
and thus cause it eventually to fall into the Sun. This drag Poynting
attributed to a back-pressure of radiation tending to retard the motion
through the ether of the emitting body, which he conceived as due to a

* Sinclair Smith (4p. ¥., 82, 192, 1935) has deduced 8-8 10° stars/(parsec)®
for the centre of the companion nebula, N.G.C. 221.

+ Phil. Trans. Roy. Soc., A, 202, 525, 1903 ; reprinted, with correction of
numerical slips, as Art. 20, p. 304, of his Collected Scientific Papers, Cambridge, 1920.
Reference may also be made to these collected works for a number of Poynting’s
addresses dealing with the same subject, notably Arts. 22, 64-67.
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crowding-up of radiation in front of the particle and to a corresponding
thinning-out behind ; the magnitude of the resulting force (as corrected in
a note at the end of the paper referred to above) was given as §Rv/c2, where
R is the rate at which the particle is radiating energy, v is its velocity through
the ether, and c¢ is the velocity of light. Now, since the Sun’s gravitational
effect on bodies of equal density goes down with the cube of their linear
dimensions, whereas the rate at which they receive and re-radiate energy
decreases only with the square of these dimensions, the effect in question
should be the more marked the smaller the body. Thus, according to
Poynting, a spherical body of radius 1 cm. and density 5-5, starting from the
Earth’s distance from the Sun and with the Earth’s orbital velocity, could
make at most some 10® revolutions before falling into the Sun, while one of
radius 10 cm. could survive at most some 10° revolutions.

Although Poynting emphasized the cosmogonic implications of these
results, they do not seem to have been widely recognized at the time.* The
subject was reopened some years later by J. Larmor, in an address before the
International Congress of Mathematicians at Cambridge, in which he gave
an alternative approximate treatment, on classical electromagnetic theory, of
“the retarding force exerted on a body translated through the ather with
uniform velocity [v], arising from its own radiation,” and showed that, to
terms of first order in v, the force in question was given by Ro/c? t—three
times Poynting’s corrected value.

But that this force could by itself act as a brake on the movement of the
particle is clearly in contradiction with the theory of relativity,] which is in
turn consistent with the electromagnetic theory on which the result was
derived. This circumstance led L. Page to undertake a detailed examination
of the matter, and he was indeed able to show that, to terms of the order in
question, the velocity of a moving body does not suffer a retardation in
consequence of its own radiation alone.§ That this 1s in fact the case was
subsequently admitted by Larmor in a Postscript to Poynting’s Collected
Papers, where he states (p. 757) that ““the remarkable result seems to be
established that an isolated body cooling in the depths of space would not
change its velocity through the @ther, the retardation due to the back thrust
of radiation issuing from it being just compensated by increase of velocity
due to momentum conserved with diminishing mass.” And here, for the
first time, the true sufficient cause of the drag in question was clearly stated,
and the paradox resolved ; in Larmor’s words, ‘‘ But for Poynting’s particle

* An interesting application of these notions is to be found, however, in the
attempt of H. C. Plummer, M.N.,, 65, 229, 1905 ; 67, 63, 1906, to explain in this way
the anomaly in the mean motion of Encke’s comet.

+ Proc. Sth Internat. Cong. Math., I, 197, Cambridge, 1913 ; reprinted in part
in Poynting’s Collected Papers, p. 426. 'The result quoted above is that obtained on
p- 215 of the Proceedings.

I As was pointed out in The Observatory, 40, 278, 1917, in a review of some
related work, to which Larmor replied in a letter to Nature, 99, 404, 1917, insisting
on the reality of the retardation.

§ Phys. Rev., 11,376, 1918 ; 12,371, 1918 ; summary of first article in Proc. Nat.
Acad. Seci., 4, 47, 1918.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1937MNRAS..97..423R&amp;db_key=AST

rT937MRRAS, ~97- “4Z3R0

1937 Apr. Dynamical Effects of Radiation in the Solar System 425

describing a planetary orbit the radiation from the Sun comes in, which
restores the energy lost by radiation from the particle, and so establishes
again the retarding force [ — Rv/c?].” However, Larmor goes further and
asserts that the particle is subject to yet another drag, of the same amount,
due to the ““astronomical aberration of light,” thus doubling the result which
he had previously obtained. Closer examination shows, however, that this
doubling——which, in its entirety, would again lead into contradiction with the
theory of relativity—affects only the radial component of the drag, to terms of
the order retained by Larmor, and is therefore ineffective in producing a
further decrease of angular momentum.

At the instance of Professor H. N. Russell, who called my attention to
Poynting’s paper, I have recently undertaken an examination of the whole
question from the standpoint of the theory of relativity. On communicating
my findings to him, he has urged that I make them public ; this, then, is the
purpose of the present note. In the following Section the exact relativistic
equations are derived, and in subsequent Sections are applied (to terms of
first order in v) to those questions which first attracted Poynting’s attention.
I may say that for an understanding of these latter applications, the reader
unfamiliar with the notation and methods of the theory of relativity need not
have read the more rigorous derivation of Section 2, for to that approximation,
in which only linear terms are preserved, the equations of motion are readily
interpretable in classical terms, as set forth at the opening of Section 3.
Aside from its intrinsic interest, the precise relativistic treatment was deemed
necessary to establish beyond all cavil the existence of just those linear terms,
and no others, which are employed in the subsequent development. Itisa
pleasure to record here my indebtedness to Professor Russell for his stimulat-
ing comments and advice, particularly on the astronomical aspects of the
subject, to which the latter Sections are devoted.

2. Relativistic Equations of Motion.—We propose, then, to investigate the
motion of a small, intrinsically spherical body in a beam of radiation, under
the supposition that it absorbs all the energy falling upon it, and that it
re-emits this energy at the same rate isotropically with respect to a reference
system in which it is instantaneously at rest. This latter circumstance
suggests that we first set up the equations in the rest system, and then
transform them back into the original inertial system ; this procedure will
have the additional advantage that we may take over, without essential
modification, results on radiation pressure which have been established by
purely classical methods for bodies at rest. As will be seen in the sequel,
it will suffice to consider the problem in the frame of the special theory of
relativity, for the modifications necessitated by the general theory can most
easily be made later, in case they are desired.

Let the original reference system S, which may in the applications be
taken as one in which the Sun is instantaneously at rest, be defined by a
Minkowski co-ordinate system x* =(t, x, ¥, %), in which the invariant line
element assumes the canonical form

ds? =g, dxtdx¥ = dt* — (dx® + dy* + dz?)/c?, (2.1)
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where the repeated indices p, v are summed over their range o, 1, 2, 3. The
rotational motion of the body is here ignored, as its energetic effects are
presumably negligible and we are assuming that in all cases the mechanism
of transfer of energy within the body is such that it is ultimately radiated
isotropically from all portions of the surface of the body; under these
conditions the motion of the body may be specified by a unit four-vector of
velocity u”, satisfying the equation

gutuw’ =1, (2.2)
or by its energy-momentum vector mu”, where m is its proper mass. For
considerations not involving diffraction or selective pressure—the influence
of which is touched upon later—the primary radiation may be thought of as
a plane-parallel beam, defined in direction by a null-vector /# whose com-

ponents are chosen subject to the convenient normalization condition /°=1 in
the given reference system S :

gl =o, [P=1; (2.3)
the density of energy in this incoming beam may then be taken as the temporal
average d of the electromagnetic energy density. Under these circumstances
the primary radiation is completely specified by the energy-momentum-
stress tensor

e = dIMp, (2.4)

representing a beam of energy density e? =d carrying momentum at the rate
d per unit cross-section in the spatial direction defined by the components
[ (a=1, 2, 3) of I#, and exerting a pressure d in this direction.

In order to carry out the programme outlined above, we introduce, in the
neighbourhood of an event E in the history of the particle, a rest system 2y,
with co-ordinates £ =(7, &, 1, {). We denote the components in Xy of the
vectors u*, I*, defining the motion of the particle and the direction of the
beam, by the corresponding Greek letters v*, A®.  Then at E

v# =3,H, A% =cA%? (a=1, 2, 3), (2.5)

where the %, defining the direction of the beam in the proper-space of the
particle, may, in consequence of the fact that A is a null-vector, be considered
as the three components of a unit vector in the sense of ordinary vector
analysis ; it is to be noted that we are here not free to choose A° unity, for
the normalization is completely given by the condition that the corresponding
quantity [° in the reference system S be unity. The energy-momentum
vector of the particle is here given by mv¥, and the energy-momentum-stress
tensor of the primary radiation by

e =3AHNY A2, (2-6)

where 8 is its energy density €% in the rest system X.

The assumption that the particle re-radiates energy at the same rate at
which it receives it insures that the proper mass m of the particle is a constant
of the motion, and this and the fact that v* is a unit vector together imply
that the time rate of change of mv® vanishes at E. Now the proper rate of
change of the spatial components mv® of the energy-momentum vectorisequal
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to the impressed force, and since the particle is assumed to possess spherical
symmetry and to radiate isotropically in the rest system 2, this force can only
act in the direction v* of the spatial projection of the null-vector A of the
incoming beam. Since the particle is instantaneously at rest in the system X
the classical results on radiation pressure may be called upon for the deter-
mination of the magnitude ¢ of the force in question ; we are at the moment
primarily interested in the fact that it is in any case directly proportional to
the energy density & of the incoming beam—even where diffraction and
selective pressure play an important role, although we may then be compelled
to interpret much of what has gone before in a statistical sense. We may
therefore write " _

b =45, (27)

where in the case of principal interest below, in which the radius @ of the
sphere is large compared with the wave-length of the radiation, the factor A
is merely the projection 7a® normal to the beam of the area of the illuminated
hemisphere ; we prefer, however, to retain the more non-committal formula-
tion (2.7) to allow for cases in which diffraction or resonance may be thought
of as giving rise to a larger effective cross-section A.*

The equations of motion thus obtained in the rest system X may now be
brought together in the four-dimensional formulation

dmuvt
dr

for, on taking into account the relations (2.5), the temporal component u =0
of the right-hand side is seen to vanish at E, thus expressing the conservation
of mass, and the spatial component u =a is equal to the component ¢v* of
the force due to radiation pressure. The first term ¢A*/cA® represents the
total power-force four-vector due to the incident radiation, with which it
coincides completely in direction, and the second that due to the radiation
re-emitted at the rate ¢c.t

* Investigations on radiation pressure when diffraction is of importance are to be
found in papers by K. Schwarzschild, Sitzungsber. Bayer. Akad. d. Wiss., 31, 293,
1901, and by P. Debye, 4Ann. d. Phys., 30, 57, 1909. 'The selective pressure effects
due to resonance have also been treated by Debye, loc. cit., by L. Page, Astrophys.
Fourn., 52, 65, 1920, by W. Baade and W. Pauli, Nasurwiss., I5, 49, 1927, and by A.
Unsold, Zetts. f. Phys., 44, 793, 1927. 'The application of this latter effect to the form
of the tail of a comet, together with references to the literature, have been given
recently by K. Wurm, Zeits. f. Astrophys., 10, 285, 1935—where it is pointed out
that the pressure on CO™* due to the solar radiation is of the order of 100 times the
gravitational attraction.

1 It may be remarked, however, that the validity of these equations is not fully
circumscribed by the particular scattering mechanism here contemplated. For if,
for example, we consider the effect of the radiation on a small perfectly reflecting
sphere, the equations of motion are exactly the same as those above for complete
absorption and subsequent re-emission, the additional force on that region of the
sphere in which the normal makes an angle of less than 7/4 with the direction from
which the beam is coming being just counterbalanced by an equal and opposite force
on those portions in which the angle is between #/4 and #/2, as can be shown from
Poynting’s work on normal pressure and tangential stress due to radiation, C.S.P.,
p- 318. :

= %{ M N0yl (2.8)
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In order to obtain from (2.8) the equations of motion of the particle in
terms of the original system S with co-ordinates x“, it is only necessary to
remark that the A%, v* appearing in (2.8) are the components of the two four-
vectors which are represented in S by /¥, ##, and to express in scalar form the
quantities A% ¢ occurring in the coefficients. With regard to A% we note
that in the rest system X it is the scalar product of ¥ with v¥, and is therefore

to be replaced by the scalar
w =1, u( =X). (2.9)

Next, we note that 8, which appears in the expression (2.7) for the proper-
force ¢, is simply the component €% of the energy tensor (2.6) in the rest
system 2, and may therefore be replaced by the double inner product #*v,v,
of this tensor with the velocity vector v*. But the value e*”u,u, of this
scalar in terms of the system S is, by (2.4) and (2.9), simply w?d, and we may

therefore write
S=wd, or ¢=uw?, (2.10)

where we have introduced for convenience the force f = Ad which would act
on the particle if it were at rest in the system S.
The equations of motion of the particle in the original reference system S
are therefore
dmut  fw
ds ¢

where s is the proper time of the particle and, in recapitulation, w =/,u",
® =1, and f is the force which would act on the particle if it were at rest in the
system S—and is carefully to be distinguished from the force which does act
on it when viewed from the system X in which it s at rest.

The above development has been based on the special theory of relativity,
and we have here to add a few words concerning the modifications required
on going over to the general theory. If we consider the particle as a test
particle, whose effect on the gravitational metric due to the Sun or other
bodies is negligible, and ignore possible effects due to the interaction of
radiation and gravitation in computing the impressed force f in normal
co-ordinates at E, the only change required is the addition of the inertial

terms
m{ # }u”u" (2.12)

{I* — wut}, (2.11)

Vo

on the left-hand side of the equations of motion (2.11), where the Christoffel
symbols are computed from the given metric. This is equivalent to adding,
in the classical approximation, the Newtonian gravitational force, as is done
directly in the succeeding section, and, in the next approximation, the small
relativistic correction which is responsible for the perihelion advance of a
Keplerian orbit.

Before proceeding to the applications, let us examine the equations (2.11)
with reference to the point which has caused so much confusion in the
literature referred to in the introductory section. First, as the equations
stand they must, of course, lead to the conservation of proper mass—as can
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be seen by multiplying through by »,, and summing with respect to u, taking
into account the relations (2.2) and (2.9). Clearly the second term does here
represent an actual retarding force, which must be combined with the force
in the direction /* due to the radiation pressure of the incoming beam. But
equally clearly this force would not give rise to a retardation of the velocity
if the first term were left out of account, for we would then have

"as Tdst c ’ (2-13)

and since in this case the particle would be losing mass at the rate ¢c/c? at
which energy is being radiated away (in mass units), the second term on the
left just cancels that on the right, whence the velocity #* is constant. This
is in fact the exact relativistic form of the explanation proposed by Larmor in
the approximate treatment referred to in Section 1, and is in full agreement
with the more detailed studies by Page. The explicit introduction of the
radiation force, which represents the immediate source of the energy emitted,
serves to remove the compensating term on the left in the above equation,
and to restore the drag as giving rise to a true retardation of velocity. On
the other hand, it is apparent that any effect attributable to aberration must
already be included in the above treatment ; its introduction can at most
suggest an alternative interpretation of the results, and cannot lead to
additional terms, as was held by Larmor.*

3. Newtonian Approximation. Equations of Motion of Particle in Field of
the Sun.—For problems in which the specifically relativistic effects may be
expected to play no important rdle, the equations derived in Section 2 above
may be reduced to a simpler form, in which they are directly comparable
with the approximate equations derived by Poynting and by Larmor. Here
we are interested only in terms of first order in the ratio of the velocity of the
particle to that of light, and we may accordingly revert to the Newtonian
scheme, expressing the equations of motion in terms of the two vectors

dx*®
'va=~E, n®=1%e, (3.1)
the second of which is the unit vector in the direction of the incident beam.
The various quantities involved in the equations (2.11) may then be taken, to

* It may appear paradoxical that there can be a retardation transverse to the beam
in one reference system and not in another, but it is to be remembered that the angle
between the spatial projections of two four-vectors, such as /* and u*, is not invariant.
Thus in the case in which the incoming beam is rigorously plane-parallel, the motion
of the particle, as viewed from the standpoint of an inertial system X with respect to
which it was at one time at rest, is always along the direction of the spatial projection
[* of the null-vector defining the beam, whereas from the standpoint of an arbitrary
reference system S there will in general be a transverse component. The direct
integration of the equations (2.11) for this case shows that the ratios of the velocity
components #* approach those of the null-vector I# as s - o0, and that on following
the motion backward in time these ratios approach those of the components k* of
some other null-vector ; the possible rest systems X are characterized geometrically

by the fact that their time axes lie in the plane determined by the two null-vectors
ke, I,
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terms of first order in 2%, as

ud =1, u® =79 w=1-9,/c, (3.2)

where ,, is the component of the velocity ©® in the direction #%; the equa-
tions of motion then become, to this order,

dv®
m-— =f(1 ~vifon® ~ fole. (33)

The first term on the right may be interpreted as that due directly to the
radiation pressure, in the direction of the incoming beam but weakened by
the Doppler factor 1 —,/c, while the second represents the tangential drag
in question. The total drag in the direction of the beam thus arises from
both terms, and is in magnitude 2fv,/c, while that in directions transverse to
the beam is only fv'/c, where o’ is the component of ¢ in this direction.*

These approximate equations of motion may be readily interpreted in
terms of notions familiar in classical mechanics and electrodynamics. The
first force term is, as mentioned above, merely that due to direct radiation
pressure on a body whose velocity in the direction of the beam is v,. Now
this particle is absorbing energy at the rate ¢f =cAd, and is re-radiating it in
such a way that the outgoing radiation may be thought of as carrying away
electromagnetic momentum at the rate (cf/c?)v®, since it is distributed
isotropically about the particle, which is in turn moving with the velocity .
But in virtue of the general law of conservation of total (mechanical plus
electromagnetic) momentum, this process must cause the particle to lose
momentum at the rate fo®/c, which therefore asserts itself as the retarding
force represented by the last term in the equations (3.3).

In the case of a particle moving in the gravitational field of the Sun,
absorbing and re-emitting the Sun’s radiation falling on it in accordance with
the above scheme, we must interpret #% as the unit vector along the radius
vector from the Sun, and take the energy density 4 as falling off inversely
with the square of the distance from the Sun. Let S be the solar constant
(radiation falling on a square centimetre normal to the Sun’s rays at the mean
distance & of the Earth =1-35x 10% ergs per sec. per cm.?); then at the
distance 7 from the Sun
d=Sb%/cr?, f=mac[r?, where o«

ASh2  38b%/ 2-51 x 1ol
- = = ); (3-4)

mc®  4apc? ap

* Although the additional drag in the direction of the beam is a straightforward
consequence of the Doppler factor alluded to above, an effect found by Poynting in a
note added to his principal paper on the present question, it seems to have been
neglected in most of the treatments referred to in the introductory section. The only
paper which has come to my attention in which it has been taken explicitly into
account is the second of Plummer’s papers on the motion of comets, in which the
author thanks Poynting for having called it to his attention. Itis conceivable that it is
this effect which Larmor had in mind in referring to aberration (p. 756 of Poynting’s
C.S.P.—cf. Poynting’s somewhat misleading use of the term ‘‘aberration,” loc.
cit., p. 331), but it is to be emphasized that it affects only the component in the
direction of the beam, and does not give rise in this approximation to an additional
transverse drag.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1937MNRAS..97..423R&amp;db_key=AST

rT937MRRAS, ~97- “4Z3R0

1937 Apr. Dynamical Effects of Radiation in the Solar System 431

the second expression for a being that for the case in which we are dealing
with a small sphere of radius a, which is nevertheless large compared with the
wave-length of the incident radiation, and of material density p.* Further-
more, we must of course add on to the right-hand side of (3.3) the force
GMm/r?, in the direction —n% due to the Sun’s gravitational attraction.
These equations of motion, in polar co-ordinates (7, 6) in the plane of the
orbit with pole at the Sun, are then readily found to be

. 20f 1d, . al
F—r0?= —%—7, ; Jt(rzﬁ) == where p=p,—ac (3.5)
and the dot indicates differentiation with respect to #; p is the solar gravi-
tational constant p,=GM reduced by the constant ac representing the
repulsive effect of the direct radiation pressure.

These equations of motion are very similar in form to those set up by
Poynting and by Plummer, but the numerical coefficients of a, in the two
places outside of p in which this parameter occurs, differ materially from
theirs.t However, the formal similarity of the equations will be taken as
justification for presenting only a brief account of those aspects of the solution
which have also received attention at their hands, emphasizing chiefly the
points in which our results differ, and will thus enable us to develop more
fully certain other aspects of the problem. Thus it follows, as in Poynting,
from the second of the equations (3.5) that the angular momentum H of the
particle, per unit mass, decreases in accordance with the law

H=r26=h— af, (3.6)

where £ is its initial value. On employing this integral to eliminate the time
in the radial equation, we readily find as the equation of the orbit

d?u d;
z ~u+u F

@ Ha P HY (37)

where u is the reciprocal 1/r of the radius.

Our primary problem is the solution of the equation (3.7) of the orbit, for
the problem of determining the position of the particle in the orbit u =u(6)
at time # is then reduced, in principal, to the solution of (3.6) by a quadrature.
Now, although we shall be but little concerned with the rigorous solution of
these equations, it is nevertheless of considerable value to show that the
orbital equation is reducible to a Bessel equation, for this will enable us to

* We shall in the following express our results in terms of this case of principal
interest here ; if it is desired to apply them to cases in which this interpretation is
inapt, it is only necessary to replace this ““effective”” ap by 3m/4A4.

1 For purposes of comparing the results obtained here with those in the literature
referred to above, we note that if we characterize the terms —za#/r?, —af/r in the
radial and transverse accelerations in (3.5) by the number pair (2, 1), then Poynting’s
original equations are characterized by the pair (2/3, 2/3), those implied by Poynting
in the note appended at the end, and used by Plummer in his second paper, by (4/3,
1/3), those used by Plummer in his first paper by (1/3, 1/3), and those implied by
Larmor’s work by (1, 1), or by (2, 2) if his aberrational effect is taken into account.

29
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obtain the more readily a general notion of the behaviour of the exact solu-
tions, which will in turn be of considerable assistance in judging the range in
which the more manageable approximate solutions, dealt with in the sequel,
are valid. This reduction is accomplished by subjecting the variables (u, 6)
to the simple transformation

b=hja-9, u-ppsja® (3.8)
to new variables (2, ¢) ; the equation (3.7) of the orbit then becomes
d2z+1dz+< 1> 1
# e\ RSy (59

an inhomogeneous equation for 2 whose complementary function is a Bessel
function of order 1 and argument ¢. The equation (3.6), determining the
position of the particle at time #, may then be written in the convenient form

q£+au2<f>=o. (3.10)

In the applications of greatest interest we shall find that ¢ >> 1, which
suggests the use of the well-known asymptotic expansions for the com-
plementary function,* and of a corresponding expansion for the particular
integral, to which we now turn our attention. From this standpoint the
simplest particular integral—which is at the same time the most interesting
for the following—is that one which does not partake of the characteristic
oscillatory nature of the Bessel functions for large values of the argument ¢ ;
the asymptotic series for this unique integral, for values of ¢ >> 1, is given
by the divergent series

8 (—)"22”n!(n+1)!+ N .}’ (3.11)

I
qu~;S—2 1—$§+...+ o
as may be verified by substitution in (3.9). Although of little practical

application, it is of some theoretical interest to remark that any solution of
(3.7) can be shown to assume the form

¢z =P($) + Q($) log ¢ +1¢ (log $)*%:(4), (3.12)

where ¥, is the Bessel coefficient of order 1 and P, Q are even functions which
are analytic in the neighbourhood of the origin ¢ =o. The leading terms in
the expansion of u, or rather of the function ¢z which only differs from it by
a constant factor, are then given by

¢z = —3 log ¢ —24 +5¢ (log ¢)* + Ap* log ¢+ Bp* + -, (3-13)

where A and B are arbitrary constants involved in the complementary function ;
it is to be observed that the first term, which is of most importance for
sufficiently small ¢, is common to all solutions of the orbital equation.

One immediate consequence which can be drawn from this last result is

* For the properties here used of the Bessel functions, see E. T. Whittaker and
G. N. Watson, Modern Analysis, Chap. 17 (5th ed., Cambridge, 1920) ; the asymptotic
series in question are developed in Sections 17.5, 17.6.
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that, in case p#0, r cannot remain indefinitely within finite non-zero limits ;
the particle must either fall into the Sun or escape to infinity. For if we
assume that 7 does lie within such limits, it follows from (3.10) that ¢ - o
as t > o0, and hence from the dominant term in (3.13) that ¢z - oo, which is
contrary to assumption. This means, in the case p > o, in which the direct
radiation pressure is not enough to reverse the direction of effective gravity,
that the particle either escapes completely from the solar system (¢z — 0) or is
drawn into the Sun (¢z sufficiently large), and in the case pu < o, in which
effective gravity is reversed, that it is blown away, unless its initial circum-
stances of motion are such that it happens to hit the solar surface first. For
completeness we note that the physically unimportant exceptional case
p =0, in which gravity is just annulled by radiation pressure, allows the
further possibility that the particle is in or approaches the unstable limiting
position 7 =const., ¢=o0. In short, there are no finite orbits in the cases
p#o, for all either intersect the Sun’s surface or go to infinity—and even in
the exceptional case u=o0, there is in addition only a possible motion of
limitation.

In the applications a/k is small, and for many purposes it suffices to
retain only terms of first order in this ratio. The equation (3.7) of the orbit
then reduces to

du adu ( '
d—02+1—1 @—Fu = +2h9> (3.14)

and is readily handled by standard perturbation theory.

4. The Particular Integral. Resisting Medium.—The first and most
striking consequence of the retardation is that stressed by Poynting—the
gradual loss of angular momentum will eventually result in any particle being
swept into the Sun, provided only that the solar grayitational pull is not
counterbalanced by radiation pressure. It follows immediately from (3.6)
that such a particle cannot make as many as %/27a revolutions about the Sun ;
if we take as the initial value % that for a circular orbit of radius 7, under
effective gravity p, this upper limit is given by

o il

2mTa

=2-82 x 107ap(Rpu/po)t, (4.1)

where R is the initial distance 7 (in cm.) expressed in astronomical units.
Thus a particle of radius 1 cm. and density 5-5, starting from a circular orbit
at the Earth’s distance, cannot make as many as 1-55 x 10® revolutions, in
substantial agreement with the conclusions reached by Poynting.

In order to obtain an estimate of the times involved, we consider the
motion of a particle whose orbit is given by the particular integral (3.11) of
the equation of the orbit. Now the magnitude of the second term in the
expans1on of z is greatest when ¢ is least, and the least value which ¢ can
assume is that when the particle is at the surface of the Sun ; this is essentially
the value of /o for a circular orbit at the distance R =4-65 x 1072 A.U. of the
Sun’s surface. But here, by (4.1), the ratio 1 : ¢?2 is only 6-9 x 107*5u,/u(ap)?,
and for the extreme case in which the direct radiation pressure is almost
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sufficient to counterbalance gravity—for which the effective ap ~ 5-7 x 1075—
the ratio is still only of the order 2-1 x 10=%uo/u. Hence, unless the pressure
is very close indeed to the solar gravitational pull, we may safely take as the
equation of the orbit the asymptotic expansion (3.11) ; carrying only the first
two terms of this series, we find as the equation of the spiral orbit

roaqu (84 ., (4-2)
where the next term is of the order ¢=2. On expressing ¢ in terms of 7, the
differential equation (3.10) assumes the form

2adt +7(1 +8a2/ur+ . . .)dr =o, (4-3)

and on integrating this equation we find that a particle initially at the distance
7 from the Sun will be at the distance 7, at time

t=(r*—71%)/qa+4a(r — 1)/ + - (4-4)

Even for cases in which radiation pressure is a respectable fraction of

gravitation—say as much as 99 per cent.—the first term in (4.4) gives a

remarkably good approximation to the time it takes a particle to fall from a

distance r to the solar surface at ;. If in addition 7 is large compared with
the Sun’s radius, we may further simplify this to the form

t =7%/40 seconds =7-0 x 10°gpR? years, (4°5)

where R is the initial distance r expressed in astronomical units. An illu-
minating alternative form of this result is obtained by expressing the time of
fall ¢ in terms of the period P of the initial, essentially circular, orbit described
by the particle at distance 7 under the effective p ; we may then write

t=iNP, where P=2mutri (4.6)

and N is the number of revolutions (4.1) in which the particle falls into the
Sun.

To give some numerical results, we note that it follows from (4.5) that a
particle of radius 1 cm. and density 5-5 (that of the Earth), starting from the
distance of the Earth, will be swept into the Sun in 3-9 x 107 years, while a
similar particle of radius 107® cm. can survive but 3.9 x 10* years. The
lower limit for the time of fall of a particle from the distance of the Earth is
of the order of 400 years, and is realized by a particle whose effective ap is
near, but not too close to, the critical value 5-7 x 105 at which radiation
pressure just annuls the solar gravitation. Alternatively, we may express the
result above in terms of the size of the region which is swept clear of the
particles initially within it in some given period of time . Thus particles of
a given ap are swept out of a region of radius 11-9 (ap)* A.U. in 10° years ;
the upper limit of this expression, as the effective ap approaches the critical
value, is some 1600 A.U., and represents the dimensions of the greatest
region in which all particles of some effective ap (near the critical value) can
be swept into the Sun in this time 10° years.

It is clear that this effect cannot be ignored in cosmogonic speculations
employing a resisting medium, and that it may be expected to rule out
certain forms of such a medium. The application to a given type of medium
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depends sharply on the nature of the particles constituting it, and turns in the
last analysis upon the evaluation of the direct radiation pressure f, for this
determines the rate ¢f at which radiation is absorbed and re-emitted or
scattered, and therefore the rate at which angular momentum is lost. The
same remarks apply to questions of the origin, nature and continued existence
of the medium responsible for the zodiacal light and the counterglow,
questions touched upon by Poynting in several of his stimulating addresses
on the astronomical consequences of the pressure of light. On the other hand,
this effect can hardly be of appreciable influence on the galactic scale, for
the time of fall (4.5)—which, it is to be noted, does not obey Kepler’s third
law—increases so rapidly with distance that no observable effects on inter-
stellar matter are to be expected. This remark applies in particular to bodies
describing orbits around the galaxy as a whole (in spite of the fact that the
parameter a may then be some 10! times its value for the Sun), and to the
sweeping-out of the bulk of the matter constituting the enormous diffuse
nebule associated with certain stars.

In all of the above we have been concerned with particles whose effective
ap was not too close to the critical value, defined implicitly by ac=p,, at
which the direction of effective gravity is reversed—say, no nearer than 1 per
cent. for good measure. Although we have with this surely covered all cases
of possible astronomical importance, it may nevertheless be not without
interest to complete the analysis by adding a few words concerning the
behaviour of a particle whose effective ap is so small that the asymptotic
expansion breaks down. Retaining only the first two terms in the expansion

(3.13)—the only ones which do not vanish as ¢ -~ o—the orbit is the spiral
defined by

u=—%ua—?log ¢ +const., (4-7)
and on integrating (3.10) we find as the time taken by such a particle in falling
from a distance 7 to 7,

t=2a(r - 1y)/p. (4.8)
Hence in the p-range here under consideration, a further decrease causes the
time of fall to increase—toward the value oo for p — o, representing in the
limit a particle at rest under the Sun’s attraction and an equal and opposite
radiation pressure. 'This particular integral « of course vanishes for effective
gravity p =0, and cannot be used for p < o in the regions considered above,
without the addition of a complementary function, for it is there negative.

5. The Complete Integral. Encke’s Comet.—We conclude with a brief
account of the first-order perturbations caused by radiation drag, as obtained
by the usual methods from the approximate equation (3.14) of the orbit.* In
muchof this Section we limit ourselves essentially to a statement of the results,
as their derivation follows very closely that of H. C. Plummer 1 based on the
similar perturbing force obtained by Poynting.

* The more accurate long-time treatment, analogous to the development of the
previous Section 4 in that it is based on the leading terms in the asymptotic expansion
of the solution of the Bessel equation (3.9), becomes here unwieldy—and of course

reduces to the present treatment on retaining only terms of first order in a/A.
1t M.N., 65, 229, 1905 ; 67, 63, 1906.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1937MNRAS..97..423R&amp;db_key=AST

rT937MRRAS, ~97- “4Z3R0

436 Professor H. P. Robertson, 97, 6

To this order, then, the equation of the orbit is readily shown to be given
by

u=p—1{1 +2§9+e<1 —%9> cos (9—7)}» (5.1)

where p =h2/u. Consider first the more important case in which the osculat-
ing orbit is an ellipse. The first order secular perturbations, during one
revolution, of the elements of this osculating ellipse are then found to be

£ T — Ay =

P h’ e h’ y=9

An 3Aa 2+3e? 37a

n  2a 1-¢ h (5-2)

From the first of these equations it follows that the semi-latus rectum of the
ellipse diminishes at the same rate as the distance in the spiral orbit discussed
in Section 4 above, and from the second that the eccentricity decreases at an
even faster specific rate ; not only does the orbit of such a particle spiral in
toward the Sun, but it at the same time becomes more circular. The
principal modification caused by the inclusion of general relativity, for times
short compared with those in which the Schwarzschild metric is appreciably
altered because of the radiation of mass by the Sun, is the perihelion advance
2w ch?’ 53
although this effect is quite comparable in magnitude with those here con-
sidered, it would seem to be of little cosmogonic significance.

In the papers referred to above, Plummer has examined the possibility of
explaining the anomalous acceleration of the mean motion of Encke’s comet,
which exhibits itself in a decrease of its period, of about 3% years, by some 24
hours on each return. He found, in his second note, that the anomaly
could be explained by assuming that the comet’s head consisted of particles
of the order of 2 x 10~% c¢m. radius, but that the effective gravitation would
then be reduced, because of the radiation pressure, by one part in 125, and
this would lead to an untenable decrease (of the order of one part in 600) of
the assumed mean distance. 'The situation is not much improved by the
present revision of Poynting’s expressions for the drag; on employing
Abbot’s value for the solar constant and Backlund’s elements for the orbit,
as quoted by Plummer, the equations (5.2) yield

ap =0-016, ac/pe =0-0036. (5-4)

Thus the particles, of assumed density 5-5, can be some half again as large as
in Plummer’s work (or twice as large, if we reduce his to the size they would
have under the value of the solar constant here used), and the decrease in
effective gravity is now of the order of only one part in 280. But this is
presumably still inadmissibly large—if we throw all the error on to the
assumed mean distance, for example, it would lead to a discrepancy in the
parameter of the orbit of the order of one part in 104
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For cases in which the direct radiation pressure is so enhanced by diffrac-
tion or resonance that it reverses the direction of effective gravity, as in the
case of the material constituting the tails of comets, the retardation is corre-
spondingly increased. But here there is but little time for the production of
observable effects, for, unless other forces are at work, the particle is lost to the
solar system in a relatively insignificant time. If we take the effective p to
represent a repulsion [N times as strong as gravity, then

a =(N+1)pefc =(IN + 1)4-41 x 1015, (5.5)
and the equation of the orbit is
Nugi{ e 1 -2 (142 >}
u=Nuh {e<1 zh6> cos (6 —v) <I +zh9 (5.6)

Assume that at perihelion the particle has v times the circular velocity at that
distance ; the constant e, which is essentially the eccentricity of the tangent
hyperbola described under the repulsive force Np,/r? from the same initial
conditions, is then found to be

e=1+v*/N. (5.7)

For cases in which this differs but little from unity, the order of the effect is
illustrated by the fact that it results in a small decrease 5 of the semi-angle
between asymptotes of amount

v: oa

~ 37\/' W (5-8)

In all cases there is a tendency for the particle to lose energy, as well as
angular momentum, to the radiation field—where it is interpretable as
Doppler shifts. The mechanical aspects of this may perhaps be most clearly
brought out by returning to the equations of motion (3.5) and computing the
rate of change of the sum

E=T+ U=%(f2+r292)—’%' (5.9)
of the kinetic energy T and the gravitational energy U, per unit mass of the
particle. The result of this computation is that

%—f= —%—%(2f2+1292), where V= —a;, (5.10)
may be thought of an additional potential energy attributable to the direct
radiation pressure, and the second, essentially negative term is that due to
the non-conservative dragging forces. It therefore follows that the sum
T+ U+ V must decrease monotonically ; but then on describing a closed
circuit, or an arc beginning and ending at the same distance 7 from the Sun,
the kinetic energy 7" must alone suffer the entire loss, since U and V return to
their original values. Thus, in particular, a particle entering the solar
system from without must leave with a smaller limiting velocity—if, indeed,
it ever gets out again, for unless its entering velocity is sufficiently in excess of
the parabolic velocity under effective gravity p, it will be captured by the Sun.
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6. Summary.—This examination, from the standpoint of the theory of
relativity, of the problem of the retardation of motion of a body receiving and
re-emitting radiation, has established the existence of a drag of the same
general nature as that predicted by Poynting on classical grounds. 'The
actual expressions for the retarding force, for the case of a spherical particle
reflecting or absorbing and re-emitting the radiation it receives from the Sun,
differ from those obtained by Poynting and by Larmor, even in the approxi-
mation to which their considerations were restricted, and it was therefore
considered desirable to supplement the rigorous derivation by a brief account
of the specific effects arising from the drag in the justifiable approximation
in which only terms of first order in the velocity are retained. Those effects
of greatest astronomical interest would seem to be the secular decrease of the
mean distance of the particle from the Sun—of roughly three times the
amount predicted by Poynting and by Plummer, or one-half of that implied
by the later considerations of Larmor—and the similar decrease in the
eccentricity of the osculating orbit, all on the supposition that the direct
radiation pressure is not strong enough to reverse the direction of effective
gravity. The point of most significance for cosmogony is that this drag,
attendant on the pressure due to the solar radiation, constitutes a force which
is effective in clearing the neighbourhood of the Sun of small particles in
astronomically significant times.

Princeton University :
1937 February.

TWO VISUAL BINARY ORBITS.
R. v. d. R. Woolley and L. S. T. Symms.

(Communicated by the Astronomer Royal)

This note describes the calculation of the orbits of two visual binary
stars which have many features in common. Both orbits are highly inclined
and highly eccentric, and in both cases observations in at least one quadrant
are lacking, and the important part of the orbit round periastron is un-
observed. On the other hand, both stars have completed at least one revolu-
tion, so that some elements, notably the period, can be determined with
accuracy. Lastly, both stars are approaching periastron, and it is just
possible that a careful examination of the spectrum will show doubled
lines, as velocity differences of about 20 km./sec. may be expected. Need-
less to say, if spectroscopic observations of velocity difference are secured
they will not only yield excellent data for improving the orbital elements
at their weak points, but will also give values for the parallaxes and other
important quantities connected with the stars.

In both cases the new orbits have been computed by applying differential
corrections to published orbits. 'The elements of the orbit may be expressed
in the form 4, B, F, G, e, T, n, such that the rectangular co-ordinates (x, )
of the companion referred to the primary as origin are given by
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